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Abstract. Reasonable point set selection is of paramount importance to the accuracy of high-
dimensional integrals that will be encountered in various disciplines. In the present paper, to im-
prove the point selection and to overcome the computational complexity of evaluating classical dis-
crepancies, the concept of extended F-discrepancy (EF-discrepancy) and generalized F-discrepancy
(GF-discrepancy) of a point set is introduced and justified by comparative studies with other exist-
ing discrepancies. Meanwhile, the extensions of Koksma-Hlawka inequality for EF-discrepancy are
proved and a conjecture for GF-discrepancy is put forward and discussed. This GF-discrepancy is
then employed as the objective function when selecting the optimal rotation angles in the rotation
transform of the quasi-symmetric point method (Q-SPM). Meanwhile, it is also proved that the
rotation transform will keep the degree of algebraic accuracy. A genetic algorithm is adopted to
solve the optimization problem. Several numerical examples are elaborated, demonstrating that the
GF-discrepancy is a reasonable index in judging the goodness of a point set, and that the optimal ro-
tation of Q-SPM will greatly improve the accuracy of stochastic analysis of nonlinear structures. The
proposed GF-discrepancy and the resulting rotational Q-SPM point sets could be applied directly to
other problems of uncertainty quantification. Problems to be further studied are discussed.
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transform; genetic algorithm, probability density evolution method

AMS subject classifications.

1. Introduction. High-dimensional integrals are encountered in various science
and engineering disciples, particularly when stochastic phenomena are addressed, e.g.,
finance [13], uncertainty quantification of various physical and engineering systems
[26] and stochastic dynamics [3, 14]. A variety of methods, usually called cubature
formulae [8], have been developed in the past decades. The cubature formulae gener-
ally adopt a weighted summation of a series of function values at a specified point set
as an approximation of the target high-dimensional integral. Basically, they could be
classified into two types: (1) the type in which the point set is determined by prescrib-
ing the degree of algebraic accuracy, e.g., the Gaussian quadrature, the sparse grid
method [22] and the Quasi-Symmetric Point Method (Q-SPM) [23], and (2) the type
in which the point set is generated by some sampling techniques to achieve uniformity
to a degree. The latter includes methods adopting random points, e.g., Monte Carlo
method [20] and their improvements, and methods adopting deterministic points, e.g.,
the Number Theoretical Method (NTM, also known as Quasi-Monte Carlo method in
literature) [12, 13, 17].

In many cases, the NTM point sets take advantages over Monte Carlo simulations
because of their deterministic and lower discrepancy, which in turn guarantees their
deterministic and lower error bound in the sense of the Koksma-Hlawka inequality
[7, 17]. In this context, the discrepancy plays an important role in point selection.
However, the efforts of computing discrepancies, except some analytical elegant results
for special cases, are usually prohibitively large due to the so-called curse of dimen-
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sionality. For instance, it was shown that the computation of star discrepancy is an
NP-hard problem [7]. In addition, mostly equal weights are used in the construction
of formulae based on NTM point sets. The possibility of improving the accuracy by
adopting non-equal weights is seldom explored.

In the present paper, the concept of generalized F-discrepancy (GF-discrepancy),
where the assigned probabilities proposed by Chen et al [2] are involved to replace the
equal weights to capture the effect of non-uniformity in a way, is introduced and jus-
tified by some comparative studies with existing discrepancies. The GF-discrepancy
is then adopted as the objective function in optimally determining the rotation angles
in the rotation transform of Q-SPM. Meanwhile, it is proved that the rotation trans-
form will not reduce the algebraic accuracy of the point set. A genetic algorithm is
employed to solve the optimization problem. It is shown that by performing an ap-
propriate rotation, the marginal probability density could be better reproduced and
numerical examples show that the accuracy of stochastic response analysis can be im-
proved considerably. Rotational quasi-symmetric point method (RQ-SPM) maintains
high accuracy even in the numerical cases where Q-SPM does not behave very well.
The results presented in this paper show that there is indeed room for improving
the accuracy of numerical integral or uncertainty quantification by minimizing GF-
discrepancy through rearranging existing cubature point sets or other kind of good
point sets.

2. Generalized F-discrepancy. In this section, the concepts of F-discrepancy
and extended F-discrepancy are reviewed first. Then, the generalized F-discrepancy
is introduced, and the error bounds associated with the extended F-discrepancy and
generalized F-discrepancy are studied. Different discrepancies of points sets selected
by various methods are exemplified to justify the concept of generalized F-discrepancy.

2.1. Generalized F-discrepancy. The discrepancy of a point set is defined by

(2.1) D(Pn) = sup
x∈Cs

[
N(Pn, [0,x))

n
− V ([0,x))

]
,

where Cs = [0, 1]s is the s-dimensional unit hyper-cube, Pn = {xq = (xq,1, xq,2, . . . ,
xq,n), q = 1, 2, . . . , n} is the point set with cardinal number n, N(Pn, [0,x)) is the
number of the points scattered in the hyper-rectangle [0,x), and V ([0,x]) =

∏s
j=1 xj

is the volume of the hyper-rectangle [0,x). Such defined discrepancy is called Weyl’s
discrepancy (also called star discrepancy, e.g., in [17]) and is usually adopted to mea-
sure the uniformity of a point set [12]. What is very important is that this discrepancy
gives an error bound for any function f with bounded variation by the celebrated
Koksma-Hlawka inequality [12]

(2.2)

∣∣∣∣∣
∫
Cs

f(x)dx− 1

n

n∑
q=1

f(xq)

∣∣∣∣∣ ≤ D(Pn) · TV(f),

where

(2.3) TV(f) =

s∑
α1+···+αs=1

∫ 1

0

· · ·
∫ 1

0

∣∣∣∣ ∂α1+···+αsf

∂xα1
1 · · · ∂xαs

s

∣∣∣∣ dx1 · · · dxs

is the total variation of the function f in the sense of Hardy and Krause, which
essentially characterizes the irregularity of the hyper-surface f(x) [17]. Generally,
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if f(x) is smoother, TV(f) is smaller. In the discretized case, for a 2-dimensional
function TV(f) reads [12]

(2.4) TV(f) =

l−1∑
i=0

l−1∑
j=0

|△11f(xi, yi)|+
l−1∑
i=0

|△10f(xi, 1)|+
l−1∑
j=0

|△01f(1, yj)| ,

where△10f(xi, y) = f(xi+1, y)−f(xi, y),△01f(x, yj) = f(x, yj+1)−f(x, yj),△11f(xi,
yj) = f(xi, yj)− f(xi+1, yj)− f(xi, yj+1)+ f(xi+1, yj+1), and (l+1) is the number of
discrete nodes in each direction of the discrete grid used for evaluating the variation.

Clearly, 2.1 could only be applied to the cases when the random variables follow
uniform distributions. For non-uniform distributions, it could be extended to the
F-discrepancy defined by [9]

(2.5) DF (Pn) = sup
x∈Rs

|Fn(x)− F (x)| ,

where F (x) is the cumulative distribution function (CDF) of the random vector X
and Fn(x) is the empirical CDF given by

(2.6) Fn(x) =
1

n

n∑
q=1

I{xq ≤ x},

where I{·} is the indicator function whose value is one if the event is true and otherwise
zero. Clearly, for uniform distributions 2.5 and 2.6 reduce to 2.1.

The definition in 2.6 indicates that all the points have the same weight 1
n . Because

the points are usually not adequately uniformly scattered, to characterize the non-
uniformity to a degree by introducing the concept of assigned probability is more
reasonable. To this end, the space ΩX is partitioned by adopting the point sets
xq, q = 1, 2, · · · , n as the nucleus of the Voronoi cells [6]. Denote the Voronoi cell of
xq by Ωq. We have ∪n

q=1Ωq = ΩX and Ωq ∩ Ωk = ∅, for q ̸= k. Then for each point
xq the probability

(2.7) Pq =

∫
Ωq

pX(x)dx, q = 1, 2, · · · , n

is assigned.
The F-discrepancy in 2.5 could be further extended by replacing the empirical

CDF in 2.6 by [14]

(2.8) Fn(x) =
n∑

q=1

Pq · I{xq ≤ x},

where Pq’s are the assigned probabilities defined in 2.7.
It is expected that the smaller the extended F-discrepancy (which could be de-

noted by DEF (Pn) and shortly called EF-discrepancy), the better performance the
point set will exhibit (in the sense of charactering the joint probability distribution).
However, the efforts of computing the extended F-discrepancy defined by 2.5 and 2.8
are the same as star discrepancy, which is an NP-hard problem [7]. To avoid this trou-
ble, a generalized F-discrepancy (GF-discrepancy) could be proposed as the maxima
of all the marginal F-discrepancies

(2.9) DGF (Pn) = max
1≤i≤s

{DF,i(Pn)},
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where

(2.10) DF,i(Pn) = sup
x∈R

|Fn,i(x)− Fi(x)| , i = 1, 2, · · · , s

is the marginal F-discrepancies in the direction Xi. Here, Fi(x) is the marginal CDF
of Xi and Fn,i(x) is the empirical marginal CDF of Xi defined by

(2.11) Fn,i(x) =
n∑

q=1

Pq · I{xq,i ≤ x},

where xq,i is the i-th component of xq and Pq is the corresponding assigned probability.
We stress here that even in the marginal discrepancies the cross-variate information
is involved in some way because the assigned probabilities are related to cross-variate
spatial position.

The computation of DGF (Pn) = max1≤i≤s {DF,i(Pn)} involves s one-dimensional
empirical CDF evaluations of cost M for a total cost of order sM , whereas the com-
putation of DEF (Pn) defined by 2.5 and 2.8 involves an s-dimensional empirical CDF
evaluation whose computational effort is of order Ms. Thus, the employment of
DEF (Pn) is usually unfeasible for multi-random variables but the computation of
DGF (Pn) is very efficient. The following theoretical discussions and numerical exem-
plifications will justify the concept of EF- and GF-discrepancies.

2.2. Extension of Koksma-Hlawka inequality. Because the concept of dis-
crepancies is extended to take into account the effect of assigned probabilities, it is
expected that the Koksma-Hlawka inequality 2.2 could also be extended. This is true
due to the following two theorems.

Theorem 2.1. (extended Koksma inequality for one-dimensional problems) If
f has bounded variation TV(f) on [0, 1], then for any x1, x2, · · · , xn ∈ [0, 1] whose
assigned probabilities are P1, P2, · · · , Pn, respectively, where Pq > 0 and

∑n
q=1 Pq = 1,

we have

(2.12)

∣∣∣∣∣
∫ 1

0

f(x)dx−
n∑

q=1

Pqf(xq)

∣∣∣∣∣ ≤ DEF (Pn)TV(f),

where DEF (Pn) is defined by 2.5 and 2.8 with F (x) = x because uniform distribution
is considered here. Note that in this case DGF (Pn) = DEF (Pn).

Proof. The theorem is an extension of the Koksma inequality and the proof is
analogous to the proof of the Koksma inequality provided by [17].

Without loss of generality, we let x1 < x2 < · · · < xn. Put x0 = 0, P0 = 0 and
xn+1 = 1. Using summation by parts and denoting fq = f(xq), we obtain

n∑
q=1

Pqf(xq)

= −

[
P0(f1 − f0) + (P0 + P1)(f2 − f1) + · · ·+

(
n∑

q=0

Pq

)
(fn+1 + fn)

]
(2.13)

= f(1)−
n∑

j=0

[(
j∑

q=0

Pq

)
(fj+1 − fj)

]
.
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Then using integration by parts, we have
∫ 1

0
f(x)dx = f(1) −

∫ 1

0
xdf(x), which is

followed by∫ 1

0

f(x)dx−
n∑

q=1

Pqf(xq) =

n∑
j=0

{(
j∑

q=1

Pq

)
(fj+1 − fj)

}
−
∫ 1

0

xdf(x)

=
n∑

j=0

∫ xj+1

xj

(
j∑

q=1

Pq − x

)
df(x)(2.14)

=
n∑

j=0

∫ xj+1

xj

(
n∑

q=1

PqI{xq ≤ x} − x

)
df(x).

Considering 2.5 and 2.8 and noting F (x) = x, we have

(2.15)

∣∣∣∣∣
n∑

q=1

PqI{xq ≤ x} − x

∣∣∣∣∣ ≤ DEF (Pn) .

Substituting 2.15 in 2.14 yields∣∣∣∣∣
∫ 1

0

f(x)dx−
n∑

q=1

Pqf(xq)

∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=0

∫ xj+1

xj

(
n∑

q=1

PqI{xq ≤ x} − x

)
df(x)

∣∣∣∣∣∣
≤ DEF (Pn)

n∑
j=0

∫ xj+1

xj

|df(x)|(2.16)

≤ DEF (Pn)TV(f).

This completes the proof of Theorem 2.1.
It should be mentioned that this theorem has once been implied in [19] proved in

a different way.
Theorem 2.2. (extended Koksma-Hlawka inequality for multi-dimensional prob-

lems) If a multi-variable function f has bounded variation TV(f) on [0, 1]s, then for
any x1,x2, · · · ,xn ∈ [0, 1]s whose assigned probabilities are P1, P2, · · · , Pn, respective-
ly, where Pq > 0 and

∑n
q=1 Pq = 1, we have

(2.17)

∣∣∣∣∣
∫ 1

0

· · ·
∫ 1

0

f(x)dx−
n∑

q=1

Pqf(xq)

∣∣∣∣∣ ≤ DEF (Pn)TV(f),

where DEF (Pn) is defined by 2.5 and 2.8 and F (x) =
∏s

i=1 xi for the uniform distri-
bution.

Proof. Theorem 2.2 is a generalization of the classical Koksma-Hlawka inequality
(2.2) from equal weights to non-equal weights. By analogy to the proof given in [12],
Theorem 2.2 can be proved. We only consider the proof of the 2-dimensional case here.
Detailed proof for higher-dimensional (s ≥ 3) situation is provided in the Appendix
to avoid lengthiness in this section.

According to Theorem 5.1 in [12], any bounded function could be represented as
a difference of two generalized monotonic functions. Thus, we have

(2.18) f(x, y) = f1(x, y)− f2(x, y),
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where f1(x, y) and f2(x, y) are two generalized monotonic functions. A generalized
monotonic function f1(x, y) is such a function that the following three conditions are
met: (1) f1(x

′, y) − f1(x, y) has the same sign or equals zero; (2) f1(x, y
′) − f1(x, y)

has the same sign or equals zero; and (3) f1(x, y) − f1(x
′, y) − f1(x, y

′) + f1(x
′, y′)

has the same sign or equals zero for any given x, y, x′, y′ satisfying 0 ≤ x ≤ x′ ≤ 1,
0 ≤ y ≤ y′ ≤ 1.

In the area i−1
q ≤ x ≤ i

q ,
j−1
q ≤ y ≤ j

q , i ≤ 1, j ≤ q, f1(x, y) is no larger than

f1

(
i
q ,

j
q

)
considering the fact that f1 is a generalized monotonic (non-decreasing)

function. Thus we have

S1 =
n∑

k=1

Pkf1 (x1(k), x2(k))

≤
q∑

i=1

q∑
j=1

 ∑
i−1
q ≤x1(k)<

i
q ,

j−1
q ≤x2(k)<

j
q

Pk

 f1

(
i
q ,

j
q

)

=

q−1∑
i=1

q−1∑
j=1

 ∑
xk<( i

q ,
j
q )

Pk


×
[
f1

(
i
q ,

j
q

)
− f1

(
i+1
q , j

q

)
− f1

(
i
q ,

j+1
q

)
+ f1

(
i+1
q , j+1

q

)]
(2.19)

+

q−1∑
i=1

 ∑
xk<( i

q ,1)

Pk

[f1 ( i
q , 1
)
− f1

(
i+1
q , 1

)]

+

q−1∑
j=1

 ∑
xk<(1, jq )

Pk

[f1 (1, j
q

)
− f1

(
1, j+1

q

)]
+ f1(1, 1).

For convenience, denote Fn(x, y) =
∑

xk<(x,y) Pk which is the empirical CDF
defined in 2.8. 2.19 could be re-written as

S1 ≤
q−1∑
i=1

q−1∑
j=1

Fn

(
i
q ,

j
q

) [
f1

(
i
q ,

j
q

)
− f1

(
i+1
q , j

q

)
− f1

(
i
q ,

j+1
q

)
+ f1

(
i+1
q , j+1

q

)]

+

q−1∑
i=1

Fn

(
i
q , 1
) [

f1

(
i
q , 1
)
− f1

(
i+1
q , 1

)]
(2.20)

+

q−1∑
j=1

Fn

(
1, j

q

) [
f1

(
1, j

q

)
− f1

(
1, j+1

q

)]
+ f1(1, 1).

Recalling the definition of DEF (Pn) in 2.5 and 2.8, the following holds

(2.21) Fn(x, y) =

n∑
q=1

PqI{xq < x} = xy + ϑ(x, y)DEF (Pn),
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where |ϑ(x, y)| ≤ 1. Substituting 2.21 in 2.19 yields

S1 ≤
q−1∑
i=1

q−1∑
j=1

(
ij
q2 + ϑ

(
i
q ,

j
q

)
DEF (Pn)

)
×
[
f1

(
i
q ,

j
q

)
− f1

(
i+1
q , j

q

)
− f1

(
i
q ,

j+1
q

)
+ f1

(
i+1
q , j+1

q

)]
+

q−1∑
i=1

(
i
q + ϑ

(
i
q , 1
)
DEF (Pn)

) [
f1

(
i
q , 1
)
− f1

(
i+1
q , 1

)]
(2.22)

+

q−1∑
j=1

(
j
q + ϑ

(
1, j

q

)
DEF (Pn)

) [
f1

(
1, j

q

)
− f1

(
1, j+1

q

)]
+ f1(1, 1)

≤ 1

q2

q∑
i=1

q∑
j=1

f1

(
i
q ,

j
q

)
+TV(f1)DEF (Pn),

where TV(f1) is the total variation in the sense of Hardy and Krause defined in 2.4.
Let q → ∞. It follows from 2.22

(2.23) S1 ≤
∫ 1

0

∫ 1

0

f1(x1, x2)dx1dx2 +DEF (Pn)TV(f1).

Likewise, we also have

(2.24) S1 ≥
∫ 1

0

∫ 1

0

f1(x1, x2)dx1dx2 −DEF (Pn)TV(f1).

Therefore,

(2.25) S1 =

∫ 1

0

∫ 1

0

f1(x1, x2)dx1dx2 + ϑ1DEF (Pn)TV(f1),

where |ϑ1| ≤ 1.
Similarly, the following equation holds

S2 =
n∑

k=1

Pkf2 (x1(k), x2(k))

=

∫ 1

0

∫ 1

0

f2(x1, x2)dx1dx2 + ϑ2DEF (Pn)TV(f2),(2.26)

where |ϑ2| ≤ 1.
It can be proved that TV(f) = TV(f1) + TV(f2) [12]. Then 2.25 and 2.26

immediately lead to

S1 + S2 =
n∑

k=1

Pkf (x1(k), x2(k))

(2.27)

=

∫ 1

0

∫ 1

0

f(x1, x2)dx1dx2 +DEF (Pn) [ϑ1TV(f1) + ϑ2TV(f2)] ,



8 JIANBING CHEN AND SHENGHAN ZHANG

which finally results in∣∣∣∣∣
n∑

k=1

Pkf (x1(k), x2(k))−
∫ 1

0

∫ 1

0

f(x1, x2)dx1dx2

∣∣∣∣∣
= DEF (Pn) [ϑ1TV(f1) + ϑ2TV(f2)]

(2.28)
≤ DEF (Pn) [TV(f1) + TV(f2)]

= DEF (Pn)TV(f).

This completes the proof of Theorem 2.2 for s = 2. The situation for s ≥ 3 is similar
whereas more lengthy and will be provided in the Appendix.

2.3. Quantitative relation between EF- and GF-discrepancy and error
bounds. Both Theorem 2.1 and Theorem 2.2 are the error bounds in terms of EF-
discrepancy. Analogous to these theorems, we have the following conjecture regarding
GF-discrepancy

(2.29)

∣∣∣∣∣
∫ 1

0

· · ·
∫ 1

0

f(x)dx−
n∑

q=1

Pqf(xq)

∣∣∣∣∣ ≤ α(s)DGF (Pn)TV(f),

where DGF (Pn) is the GF-discrepancy defined by 2.9 and 2.10, α(s) = O(s) and s
is the dimension. We should note that for the one-dimensional problem DGF (Pn) =
DEF (Pn) and thus the inequality 2.29 reduces to inequality 2.12, which has been
proved in Theorem 2.1. For multi-dimensional cases the rigorous proof of 2.29 is still
open. Nonetheless, we can say something more about the reasonability of 2.29 by
considering the quantitative reliability between EF- and GF-discrepancy.

According to the definition of EF-discrepancy we have

(2.30) Fn(x1, x2, · · · , xs)− F (x1, x2, · · · , xs) = ϑ(x1, x2, · · · , xs)DEF (Pn),

where |ϑ(x1, x2, · · · , xs)| ≤ 1. It is noted that 2.21 and 6.8 in the Appendix is actually
the special case of this equation as F (x1, x2, · · · , xs) =

∏s
j=1 xj . Following 2.30 there

is
(2.31)
Fn(1, · · · , 1, xj , 1, · · · , 1)−F (1, · · · , 1, xj , 1, · · · , 1) = ϑ(1, · · · , 1, xj , 1, · · · , 1)DEF (Pn)

for any 1 ≤ j ≤ s.
Substituting 2.31 in the marginal F-discrepancy as defined in 2.10 yields

DF,j(Pn) = sup
xj∈R

|Fn(1, · · · , 1, xj , 1, · · · , 1)− F (1, · · · , 1, xj , 1, · · · , 1)|

=
∣∣Fn(1, · · · , 1, x∗

j , 1, · · · , 1)− F (1, · · · , 1, x∗
j , 1, · · · , 1)

∣∣(2.32)

=
∣∣ϑ(1, · · · , 1, x∗

j , 1, · · · , 1)
∣∣DEF (Pn),

where x∗
j is the point at which |Fn(1, · · · , 1, xj , 1, · · · , 1)− F (1, · · · , 1, xj , 1, · · · , 1)|

reaches its maxima.
According to the definition of GF-discrepancy DGF (Pn) = max1≤j≤s DF,j(Pn),

there is

(2.33) DGF (Pn) =

{
max
1≤j≤s

∣∣ϑ(1, · · · , 1, x∗
j , 1, · · · , 1)

∣∣}DEF (Pn).
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Because ϑ(x1, x2, · · · , xn) ≤ 1 for all x1, x2, · · · , xn, we have immediately

(2.34) DGF (Pn) ≤ DEF (Pn).

On the other hand, we note that the EF-discrepancy characterizes the global
discrepancy involving all s directions, whereas the GF-discrepancy seems to taking
only marginal information separately, but it should be stressed that the computation
of assigned probabilities involves global distribution information. Thus, there should
be more connections between EF- and GF-discrepancy. Intuitively, we guess that
EF-discrepancy should not exceed s times of GF-discrepancy, i.e.

(2.35) DEF (Pn) ≤ sDGF (Pn).

Substituting inequality 2.35 in the extended Koksma-Hlawka inequality 2.17 im-
mediately yields inequality 2.29 provided α(s) = s.

It follows from inequalities 2.34 an 2.35 that

(2.36)
1

s
DEF (Pn) ≤ DGF (Pn) ≤ DEF (Pn) or DGF (Pn) ≤ DEF (Pn) ≤ sDGF (Pn).

Again we stress that part of the above inequality is rigorous proved by inequality
2.34 but the rest part is a conjecture. For uniform distributions and s = 2, 3, 4 and 5,
Fig. 2.1 shows the pairs of EF- and GF-discrepancy of different point sets in logarithm
coordinate system. It is seen that inequality 2.36 holds very well without exception.
Of course, to be more confident, we may replace s in inequality 2.36 by α(s) = O(s).

2.4. Justification of the concept of EF- and GF-discrepancy by nu-
merical examples. It should be emphasized that the employment of the assigned
probabilities rather than 1/n is essential for the definition of DGF (Pn) (2.9). Oth-
erwise, there might be severe deficiency. For comparison, we could define an index
by

(2.37) DCF = max
1≤i≤s

{
sup
x∈R

∣∣∣F̃n,i(x)− Fi(x)
∣∣∣} .

The only difference between 2.9 and 2.37 is that the marginal empirical CDF in 2.37
is defined as usual by

(2.38) F̃n,i(x) =
n∑

q=1

1

n
· I{xi,q < x}.

instead of 2.11, i.e., the assigned probabilities Pq’s are replaced by 1/n. We will show
that the index DCF in 2.37, if adopted to replace DGF , will give misleading results
even for some very simple cases.

Suppose X,Y are two independent random variables uniformly distributed over
[0, 1] × [0, 1]. To illustrate the problem, we consider 3 different point sets with
the same cardinal number: one is uniformly scattered on the diagonal line, one
is generated by the number theoretical method (NTM) by x1,q = 2q−1

2n , x2,q =
2Fm−1q−1

2n − int
(

2Fm−1q−1
2n

)
for q = 1, 2, · · · , n, n = Fm, where Fm = Fm−1 + Fm−2,

F0 = 1, F1 = 1 is the Fibonacci sequence, and int(·) indicates the greatest integer
smaller than the bracketed value [12], the third point set is generated by Monte Carlo
sampling (MCS). For n = 13 the three point sets are shown in Figs. 2.2(a), 2.2(b) and
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Fig. 2.1. The pair of EF- and GF-discrepancy of different point sets in logarithm coordinate
system (Annotation: The lower line is DGF (Pn) = 1

s
DEF (Pn), the upper line is DGF (Pn) =

DEF (Pn)).

2.2(c), respectively. Simultaneously, the corresponding Voronoi cells, whose areas are
the assigned probabilities for the uniform distribution, are also pictured in Fig. 2.2.

The comparison among CDFs of X is shown in Fig. 2.3. Because of the symmetry
the CDFs of Y are identical to those of X, respectively. Intuitively it is seen that
the NTM point set is far more uniform over [0, 1]× [0, 1] than the Diagonal and MCS
point set (Figs. 2.2(a), 2.2(b) and 2.2(c)). This is verified by the discrepancy (F-
discrepancy): for the point sets in Fig. 2.2 with n = 13, DF (PDiagonal) = 0.2884 and
DF (PMCS) = 0.4993 (by 2.5 and 2.6), which are greater than DF (PNTM) = 0.1405
(Table 2.1). In the case the assigned probabilities are employed to replace 1/n,
the EF-discrepancies for the point sets are, respectively, DEF (PDiagonal) = 0.3831,
DEF (PMCS) = 0.3451, DEF (PNTM) = 0.1813 and (computed by 2.5 and 2.8), again
the former two are greater than the third one. This means that both DF and DEF

could reasonably character the uniformity property of the point sets. Besides, it is
noted that in the above point sets for n = 13 the MCS point set in Fig. 2.2(c) of course
seems more uniform than the Diagonal point set in Fig. 2.2(a), but the F-discrepancies
are DF (PDiagonal) = 0.2884 < DEF (PMCS) = 0.4993 which gives misleading result.
Considering the EF-discrepancy where the effect of assigned probability is involved,
there is DF (PDiagonal) = 0.3831 > DEF (PMCS) = 0.3451, which yields a reasonable
judgement for the degree of uniformity of the point sets. This means that in essence
DEF is an index more reasonable than DF , i.e., introducing the effect of assigned
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(c) Voronoi cells for MCS point set (n = 13)

Fig. 2.2. The point set and the corresponding Voronoi cells in a unit square.

Table 2.1
Different F-discrepancies of 3 types of point sets with different number as shown in Figs. 2.2

and 2.3.

Methods
Number of

DF DCF DEF DGFpoints

Diagonal
13 0.2884 0.0385 0.3831 0.1627
144 0.2534 0.0035 0.3379 0.1285
1597 0.2503 0.0003 0.3337 0.1253

NTM
13 0.1405 0.0385 0.1813 0.0793
144 0.0180 0.0035 0.0257 0.0122
1597 0.0021 0.0003 0.0052 0.0026

MCS
13 0.4993 0.3247 0.3451 0.1952
144 0.0911 0.0354 0.0494 0.0275
1597 0.0263 0.0217 0.0093 0.0061

probability will improve the adequacy of the discrepancy for judging uniformity, es-
pecially in the cases the discrepancy is relatively large.

Now we consider the maximum marginal discrepancies. In this case, employing
2.37 and 2.38 where 1/n is adopted in the computation of empirical CDF (thus the
effect of assigned probability is not taken into account), we have DCF (PDiagonal) =
0.0385 and DCF (PNTM) = 0.0385. They are exactly equal! Actually this is expected
because the projections of the point sets PDiagonal and PNTM in Xl are exactly the
same uniformly spaced and the weights are all identical to 1/n. The exact values of
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DCF of the two point sets are all 1/(2n). This means that DCF could not distinguish
the degree of uniformity of these two point sets. But if we make use of 2.9 and 2.11
where the effect of assigned probability is involved, the GF-discrepancies of the two
point sets could be obtained as DGF (PDiagonal) = 0.1627 and DGF (PNTM) = 0.0793.
The former is greater than the latter, implying that the NTM point set is more
uniform than the Diagonal point set. This judgement is of course reasonable. The
distinction of DCF and DGF could also be seen clearly from Figs. 2.3(a)-2.3(f), where
the comparisons between different point sets are illustrated. From these figures, it
is seen that DGF is much more sensitive than DCF to the degree of uniformity of
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(b) 13 points (NTM)
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Fig. 2.3. The CDFs defined by different F-discrepancies.
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the point sets. The reason could be seen from Fig. 2.2(a). It is observed clearly
that the assigned probabilities are far from 1/n. Another interesting property of
DGF (PDiagonal) is that the GF-discrepancy of Diagonal point set could not decrease
to zero as the number of points n increases to infinity. Actually, considering the
Voronoi cells and the assigned probabilities, it is easy to prove that the saturated
limit value is limn→∞ DGF (PDiagonal) = max0≤x≤ 1

2
(x − 2x2) = 1

8 = 0.125. The
tendency of approaching this value could be observed very clearly from Table 2.1.
This means that because all the points are located on the diagonal line, even infinite
points could not improve the degree of uniformity of the point set over the square.
On the other hand, for the NTM point set, the GF-discrepancy will tend to zero as
n increases to infinity, which means that the degree of uniformity could of course
be improved for NTM point set when the number of points increases. Clearly, such
judgements based on GF-discrepancy are reasonable.

Viewed from the above tables and figures, the employment of the GF-discrepancy
DGF defined in 2.9 and 2.11 could be justified. Compared to the EF-discrepancy
involving the effect of assigned probability whose computation is an NP-hard problem,
the computation of GF-discrepancy is much more efficient and increases only linearly
against the dimension. This makes GF-discrepancy applicable to higher-dimensional
problems.

3. Applications of GF-discrepancy in rotational Q-SPM. In this section,
the GF-discrepancy will be applied to the optimal selection of rotation angles for the
improvement of a class of asymmetric cubature formulae, which could be called the
quasi-symmetric point method (Q-SPM) [27], developed for symmetric measures by
Victoir [23]. The necessity of the rotational transform on Q-SPM is firstly discussed.
The algebraic accuracy of the new point set is proved to be identical to Q-SPM, but
the GF-discrepancy of the new point set is greatly reduced and the accuracy is thus
obviously improved.

3.1. Q-SPM and rotational Q-SPM. Using the invariant theory and orthogo-
nal arrays, Victoir constructed some cubature formulae for Gaussian weighted multi-
dimensional integrals with 5th degree of algebraic accuracy [23]. These points are
called the quasi-symmetric points [27]. If f(x) is a polynomial whose degree is no
more than 5, the following equation holds exactly

(3.1)
1

(2π)s/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
ex

Tx/2f(x)dx1 · · · dxs =

N∑
k=1

akf(xk)

with xk being the quasi-symmetric points and ak being the corresponding weights.
Two classes of cubature formulae with all positive weights are given in Q-SPM. The
number of points needed by the second class of Q-SPM for the dimensions from 3
through 16 is less than 300, from 17 to 20 is limited to a little greater than 500
whereas from 21 to 24 is only nearly 1000 [23, 27]. This is extremely exciting for the
algebraic accuracy of up to 5th degree and the dimension up to 24. The second class
of these integral points is given by

(3.2) x0 = (hr, 0, · · · , 0), x1 = (hη, · · · , hη)

(3.3) r2 = (s+ 2)/2, η2 = (s+ 2)/(s− 2)
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(a) (b)

Fig. 3.1. Quasi-symmetric points and rotation of the quasi-symmetric points.

where s is the dimension and h is the permutation of ±1 . The sums of the weights
for these points read

(3.4) w0 = 8s/(s+ 2)2, w1 = (s− 2)2/(s+ 2)2

Clearly w0 +w1 = 1. By this, the weights of the points could be determined. For the
points on the coordinates, the weights are w0/n1 , for the other points the weights
are w1/n2, where n1, n2 are specified for different s in Q-SPM.

Although Q-SPM behaves well in the application to stochastic response analysis of
nonlinear structures [27], there are also some deficiencies in this method. Particularly,
because of the quasi-symmetry and sparseness of Q-SPM, the information of the
marginal probability density function of the basic random variables, which could be
intuitively characterized by the projection ratio [5], could not be captured sufficiently.
Thus the application of Q-SPM is limited in some cases. To be clearer, we use an
illustrative example to clarify the problem and to introduce the basic idea of resolving
it. It can be shown from 3.2 that there are two sets of points for the quasi-symmetric
points. One set is located on the coordinate axes and the other set includes some of
the vertexes of a hyper-cube which can be illustrated by the vertexes of the square
in Fig. 3.1. The overlapping of the projection of the four points in the x-axis and
y-axis can be easily observed. For instance, in Fig. 3.1(a), consider all the points
on the coordinate axes and the vertex points, there are totally 8 points, whereas the
projection of these 8 points on both x and y axis contains only 3 different points,
thus, the projection ratios on both axes are only 3/8. Such overlapping is more severe
in the higher-dimensional space and would result in very few effective points on each
axis. In other words, the projection ratio of Q-SPM is usually quite small. Actually,
as s = 24, when the point set in 3.2 is employed, the total number of points is 1072
and the projection ratios on all the 24 axes are now 5/1072 ≈ 1/200, which is very
small.

To resolve the matter of overlapping and to improve the projection ratios, a
natural idea is to rotate these quasi-symmetric points (Fig. 3.1(b)). The accuracy
of the integral is expected to not decrease because of the rotational symmetry of 3.1
(actually, we would show later that the accuracy is much higher) and the problem
of projection overlapping is expected to be resolved by rotation. By doing so, the
projection ratio could be increased to nearly or exactly 1, as could be seen intuitively
clearly from Fig. 3.1. But a more rigorous criterion should resort to GF-discrepancy.
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The corresponding equation to Fig. 3.1(b) is

(3.5)

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
.

This idea could be extended to high-dimensional spaces by the Givens transform
[25]. For instance, rotating a vector p = (p1, p2, · · · , ps) in the (i, j) plane by an angle
of θ (in rad) counterclockwise will yield

(3.6) p′ = Gij(θ)p,

where p′ is the point after rotation and

(3.7) Gij(θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · − sin θ · · · 0
...

...
. . .

...
...

0 · · · sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1



i-th row

j-th row

i-th column j-th column

.

therefore, any rotation of the point in the space can be expressed as

(3.8) p′ =
s∏

i=1

s∏
j=i+1

Gij(θij)p = Rp,

which includes s(s− 1)/2 times of plane rotations. In 3.8 R =
∏s

i=1

∏s
j=i+1 Gij(θij).

It is easy to verify that R is an orthogonal matrix [18], i.e.,

(3.9) RTR = I, |R| = 1,

in which |R| is the determinant of R.
Clearly, for a Q-SPM point set PQ−SPM the rotation angles θij ’s determine the

rotational Q-SPM (RQ-SPM). Thus, two questions arise: (1) Will the algebraic ac-
curacy of PQ−SPM be kept in the rotational transform? and (2) How to specify θij ’s
optimally to improve the properties of PQ−SPM? The answer to the first question
is positive and will be elaborated soon. To answer the second question, some type
of objective function J(PRQ−SPM) = J(θij), e.g., the GF-discrepancy defined in the
preceding section, could be adopted and thus an optimization problem is encountered.
Genetic algorithm could be employed in this step.

3.2. Degree of algebraic accuracy of rotational Q-SPM. Intuitively, a
rotation is a linear transform and does not change the degree of the polynomials of
the integrand function. Besides, the weight function in 3.1 is rotationally symmetric.
It is thus expected that the rotational transform will not reduce the algebraic accuracy
in comparison to the Q-SPM point set. This assertion will be proven rigorously as
follows.

Let R be the rotation matrix and f(x) be a polynomial whose degree is less
than or equal to 5. Let y = Rx, then it follows that yTy = xTx (cf. 3.9) and
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dx = |R−1|dy = dy, therefore we have

1

(2π)s/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
ex

Tx/2f(Rx)dx1 · · · dxs

(3.10)

=
1

(2π)s/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
ex

Tx/2f(x)dx1 · · · dxs.

Employing the Q-SPM point set PQ−SPM = {xk, k = 1, 2, · · · , N} with the
weights ak’s, 3.1 holds exactly for f(x) with the degree of polynomials less than
or equal to 5. As mentioned, the rotational transform is a linear transform and thus
does not change the degree of polynomials, i.e., f(Rx) has the same polynomial degree
as f(x). Thus the following cubature holds exactly

(3.11)
1

(2π)s/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
ex

Tx/2f(Rx)dx1 · · · dxs =
N∑

k=1

akf(Rxk).

Incorporating 3.1, 3.10 and 3.11 yields

(3.12)
1

(2π)s/2

∫ ∞

−∞
· · ·
∫ ∞

−∞
ex

Tx/2f(x)dx1 · · · dxs =
N∑

k=1

akf(Rxk) =
N∑

k=1

akf(yk),

where yk = Rxx are the points after rotational transform, i.e., PRQ−SPM = {yk =
Rxk, k = 1, 2, · · · , N}. This demonstrates that the rotational Q-SPM point set
PRQ−SPM = {yk = Rxk, k = 1, 2, · · · , N} has the same degree of algebraic accu-
racy as the original Q-SPM point set PQ−SPM = {xk, k = 1, 2, · · · , N} when the
corresponding weights are invariant.

It is easy to verify that the proof is also applicable to other cubature formulae
whose domain of integration and weight function both exhibit rotational symmetry.

3.3. Genetic algorithm for optimal selection of rotational angles. Em-
ploying the GF-discrepancy as the objective function, we encounter the following
optimization problem:

min{J(θi,j)} = min{DGF (PRQ−SPM(θ1,2, θ1,3, · · · , θi,j , · · · , θs−1,s))}
(3.13)

s.t. 0 ≤ θi,j < 2π, 0 < i < j ≤ s.

where PRQ−SPM(θ1,2, θ1,3, · · · , θi,j , · · · , θs−1,s) is the resulting RQ-SPM when the
transform 3.8 is performed in sequences on the original Q-SPM point set PQ−SPM.
In this sense, PQ−SPM could be regarded as a special case of PRQ−SPM when all the
rotation angles θi,j ’s are zeroes.

This is a problem of multi-variable optimization where the inputs are the rotation
angles and the objective function is the GF-discrepancy. Exhaustive search is unfea-
sible because the computational effort grows exponentially against the dimension.
Nor is analytical optimization feasible because of the complexity of the problem. A
genetic algorithm (GA) will be employed here. We should also note that once the opti-
mized RQ-SPM is determined, it could be applied to different problems of uncertainty
quantification or stochastic dynamics. In other words, such an optimization problem
could be solved once and for ever, and the tabulated results could be employed by
all the users in various fields. Thus, the rotational transform will not increase the
computational efforts when solving practical problems.
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GA was developed by Holland [11] firstly and consummated owing to the work of
De Jong and Goldberg. Based on the principles of genetics and natural selection, GA
allows a population composed of many individuals to evolve under specified selection
rules to a state that maximizes the fitness (i.e., minimize DGF in the present case).
The employment of GA in the above problem will be outlined briefly. For more
information, refer to [10]. A string of binary values is used here to represent an angle
ranging from 0 to 2π. Although the angle is discretized in this way, the difference is
negligible if the string is long enough. For the above problem, s(s− 1)/2 strings are
needed to represent the rotation angles. These strings are then connected from head
to tail to obtain a longer one, referred to as a chromosome

(3.14) chromosome =

01 . . . 0︸ ︷︷ ︸
θ1,2

11 . . . 0︸ ︷︷ ︸
θ1,3

. . . 00 . . . 0︸ ︷︷ ︸
θs−1,s

 .

The process of changing the original set of angles into a long string is called encoding
chromosomes.

GA begins by generating a number of chromosomes randomly. Each chromosome,
composed by 0 and 1, corresponds to a set of angles which can be decoded along the
length of chromosome as they were encoded. Each specified set of angles decoded from
a chromosome are inserted into 3.13 to evaluate the objective function respectively.
A fitness value is then assigned to each chromosome based on these objective function
values (i.e. the fitness could be calculated based on the rank of the objective function
values).

Chromosomes that have a lower fitness are more likely to be discarded which
imitates the procedure of natural selection. The surviving chromosomes undergo a
mating or recombination process to produce offspring by combining the information
from two or more parent chromosomes. A mutation operator, which means a bit-flip
in our case, is also introduced in this procedure to keep GA from converging too early.

After the mutations take place, the fitness associated with the offspring and mu-
tated chromosomes is computed once again. The process described is then iterated
until the quality of the strings evolves to an acceptable level or the number of iteration
reaches the prescribed value.

The program is based on the Matlab toolbox developed at Sheffield University
[21]. The size of the population is chosen to be 40. The generation gap is 0.95. The
length of the string of binary values for a single angle is 20. The probability for
mutation is taken to be 0.01 and the crossover rate is 0.7. Fig. 3.2 shows the efficacy
of GA. Experiences show that the iteration number will be usually more than 3000
to make the GF-discrepancy small enough.

4. Numerical examples. In this section, two numerical examples are presented
to show the effectiveness of GF-discrepancy and the rotational transform on Q-SPM.
In the first example, it is shown that the probability information in the initial random
variables can be characterized much better by RQ-SPM than by Q-SPM. The second
numerical examples include a series of structural dynamics analyses involving random
parameters which demonstrate that due to smaller GF-discrepancy, RQ-SPM has
considerably higher accuracy than Q-SPM.

4.1. Case 1: Probability information characterized by RQ-SPM. In this
case the 20-dimensional point set is employed to illustrate the effectiveness of RQ-
SPM. Similar results can be observed in problems in different dimensions. The GF-
discrepancy is adopted to be the objective function and genetic algorithm is performed
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Fig. 3.2. The GF-discrepancy (objective function value) against number of generations.

to choose the rotation angles. Each dimension of RQ-SPM (or Q-SPM) represents
an independent random variable with normal distribution N(µ, σ). The empirical
marginal CDF of a typical dimension calculated by Q-SPM and RQ-SPM are shown
in Fig. 4.1(a). It can be seen that the result obtained by RQ-SPM shows perfect
agreement with the exact CDF whereas the overlapping of projections in Q-SPM
can again be observed resulting in very few effective points. By rotation the GF-
discrepancy is reduced from 0.2085 (Q-SPM) to 0.0318 (RQ-SPM).

To show how the point selection will affect the output probability density function
in a clear way, the computation of the extreme value distribution (EVD) is illustrated
here. It is known that the EVD can be obtained via the probability density evolution
method (PDEM) by constructing a virtual stochastic process [4]. For clarity, we let

(4.1) Y = max(X1, X2, · · · , X20),

whereX1, X2, · · · , X20 are 20 i.i.d. random variables with normal distributionN(µ, σ).
The representative points of Y are the maximum of the representative points of
X1, X2, · · · , X20. Because of the overlapping of projections of Q-SPM point set (as
shown in 3.2 and 3.3, and schematically shown in Fig. 3.1), on each axis there are only
5 different points, which can also be observed in Fig. 4.1(a). According to the rule of
Q-SPM, by 4.1 Y could only take 3 possible values. This is shown clearly by the step
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Fig. 4.2. The empirical CDF, CDF and PDF of the extreme value by Q-SPM and RQ-SPM.

curve labeled Q-SPM in Fig. 4.2(a), where the empirical CDF is the step curve, which
is far from the exact CDF. Thereby, employing Q-SPM will definitely fail to obtain
EVD with fair accuracy. On the other hand, this problem of overlapping of projection
is almost completely avoided by employing RQ-SPM (Figs. 4.1(a) and 4.1(b)). Clear-
ly, such resulted EVD accords fairly well with the exact distribution (Fig. 4.2(b)), of
which the PDF is given by [1]

(4.2) fY (y) =
s√
2πσ

[
Φ

(
y − µ

σ

)]s−1

e−
(y−µ)2

2σ2

with µ = 0, σ = 1 and s = 20 in the present case. Here Φ(·) is the CDF of standard
normal distribution. The CDF can be obtained by integrating over the above function.
The empirical CDF of Y calculated by RQ-SPM is also shown in Fig. 4.2(a), showing
good agreement with the analytical CDF. This is very impressive considering the fact
that we did not require the empirical CDF of the extreme value approach the analytical
solutions in the objective function. The PDF of the extreme value obtained by RQ-
SPM also accords well with the exact extreme value distribution (EVD) (Fig. 4.2(b)).

4.2. Case 2: Structural analysis employing RQ-SPM. In this subsection,
a variety of multi-degree-of-freedom (MDOF) nonlinear systems are analyzed. We
start with a 9-story shear frame structure (Fig. 4.3(a)) with 20 random variables. All
the lumped masses and the initial lateral inter-story stiffness are regarded as random
variables. The mean values of mass from bottom to top are 3.5, 3.3, 3.0, 2.7, 2.7,
2.7, 2.7, 2.7 and 2.7 (×105kg), respectively. The mean values of the initial lateral
inter-story stiffness are 2.7, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0 and 2.7 (×105kN/m) in
turn from bottom to top. The extended Bouc-Wen model is adopted for the restoring
forces [16, 24]. In total 13 parameters are included in this model [16], taking the
values A = 1, n = 1, q = 0.25, p = 1000, λ = 0.5, ϕ = 0.05, dϕ = 5, dυ = 2000,
dη = 2000 and ζ = 0.99. β and γ in the Bouc-Wen model are also regarded as
independent random variables with mean values of 30 and 10, respectively. All the
random variables are normally distributed and the coefficients of variation (COVs)
are all 0.2. The El Centro accelerogram in E-W direction is adopted as the ground
motion input. The first inter-story drift is the response of interest for all the cases.
A typical sample of the restoring force v.s. inter-drift is shown in Fig. 4.3(b), which
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(a) n-story shear frame

-0.1 -0.05 0 0.05 0.1
-4000

-2000

0

2000

4000

Inter-story Drift (m)

R
e
st

o
ri

n
g
 f

o
rc

e
 (

k
N

)

(b) Restoring force

Fig. 4.3. The shear frame and a typical sample of the restoring force.

exhibits strong nonlinearity.
The evaluation of the mean and standard deviation of the responses involves a

high-dimensional integral with respect to the basic random variables, which could be
implemented by adopting the resulting point set by the proposed method in preceding
sections. In this example 20 random variables are involved and 552 points were
adopted in both Q-SPM and RQ-SPM. The comparison between RQ-SPM and Q-
SPM is shown in Fig. 4.4 where RQ-SPM has accuracy higher than Q-SPM. To check
the error quantitatively, we introduce the 2-norm relative errors of the mean and of
the standard deviation as

(4.3) e∥µ∥ =
∥µPDEM(t)− µMCS(t)∥2

∥µMCS(t)∥2
, e∥σ∥ =

∥σPDEM(t)− σMCS(t)∥2
∥σMCS(t)∥2

,

respectively, where MCS denotes the results given by 9999 times of Monte Carlo

simulation, ∥ · ∥2 means 2-norm, i.e. ∥z(t)∥ =
√∑k

i=1 z
2(ti).

Computations show that Q-SPM does not behave well for some nonlinear cases.
For instance, the accuracy of Q-SPM deteriorates quickly with the growth of the
coefficient of variation (COV) of stiffness in some nonlinear cases. Listed in Fig. 4.5
are the relative errors of Q-SPM and RQ-SPM in terms of the mean and standard
deviation. The structural parameters except the COV of stiffness have already been
given above. It is observed that the relative errors grow rapidly with the increase of
the COV of stiffness for Q-SPM whereas the accuracy of RQ-SPM is almost invariant.
Similar results can be observed in Fig. 4.6 where the COV of all random variables
varies from 0 to 0.2. Although the RQ-SPM and Q-SPM share the same degree of
algebraic accuracy, we see that the accuracy of both mean and standard deviation
by RQ-SPM is obviously higher than that by Q-SPM. The reason of such room of
improvement for Q-SPM is that the response surface of a nonlinear structure is usually
strongly nonlinear in terms of the basic random variables, and the nonlinearity is much
stronger than the polynomials of 5th degree.

This problem of accuracy deterioration for Q-SPM can be observed clearly. Ta-
ble 4.1 shows the results of several cases with different number of basic variables
ranging from 15 to 20. The parameters in the Bouc-Wen model and the Rayleigh
damping remain the same for all examples and all the coefficients of variation are
specified to be 0.2. The parameters for the 20-dimensional example are already given
above. In the case with 19 random variables, the parameters are the same as the
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Fig. 4.5. The relative error of Q-SPM and RQ-SPM v.s. coefficient of variation of stiffness.

20-dimensional one except that the top lumped mass is taken to be deterministic.
Similarity, an 8-story shear frame structure is investigated for the numerical cases
with 17 and 18 random variables. The lumped masses and the lateral stiffness from
bottom to top are the same as the previous case from bottom to the 8th floor, re-
spectively. For the purpose of examining if different inputs affect the accuracy, the
ground motion is changed to be El Centro accelerogram in N-S direction. To verify
the effectiveness of RQ-SPM in the numerical cases with 15 and 16 random variables,
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Fig. 4.6. The relative error of Q-SPM and RQ-SPM v.s. coefficient of all random variables.

Table 4.1
Errors of Q-SPM, RQ-SPM and MCS with the same number of points.

Dimension 15 16 17 18 19 20
Number of points 286 288 546 548 550 552

Q-SPM
Error of

Mean 0.0453 0.063 0.1084 0.1283 0.0549 0.0612
Std.D 0.0928 0.097 0.0808 0.0781 0.0958 0.1045

DGF 0.1938 0.1864 0.1925 0.1982 0.2035 0.2085

RQ-SPM
Error of

Mean 0.0246 0.0279 0.0183 0.0278 0.0088 0.0085
Std.D 0.0377 0.0387 0.0191 0.0251 0.0202 0.016

DGF 0.0358 0.0406 0.0442 0.0381 0.0361 0.0318

MCS

Mean Mean 0.0435 0.0525 0.0322 0.038 0.0264 0.0357
Error of Std.D 0.0793 0.0851 0.0297 0.034 0.045 0.0562
COV of Mean 0.45 0.41 0.61 0.62 0.57 0.45
Error of Std.D 0.37 0.55 0.40 0.48 0.32 0.74
Mean of DGF 0.0792 0.081 0.0638 0.0595 0.0625 0.0611

0.95 quantile Mean 0.0757 0.0879 0.0645 0.0768 0.0512 0.0621
Error of Std.D 0.1276 0.1621 0.0492 0.0608 0.0687 0.1246

a 7-story shear frame structure is adopted and the parameters are chosen similarly.
In these two cases the ground motion is changed to Kobe accelerogram.

In Table 4.1 for each case the results obtained by Monte Carlo simulation (MCS),
Q-SPM, and RQ-SPM with the same cardinal number are listed. Note that Q-SPM
and RQ-SPM are deterministic point sets, but MCS with the same cardinal number
is a random point set. The errors of the mean and standard deviation shown in
Table 4.1 for Q-SPM and RQ-SPM are deterministic. However, the errors of the
mean and standard deviation for MCS with the same cardinal number is essentially
random, thus, shown in Table 4.1 is the mean and coefficient of variation of the relative
errors of n results. The COV of the relative error for MCS is computed by

(4.4) δ =

√
1

n−1

{∑n
j−1 e

2
j − 1

n

(∑n
j−1 ej

)2}
1
n

∑n
j=1 ej

,

where ej ’s are the errors e∥µ∥ or e∥σ∥ in the j-th round of MCS. In the present paper
we take n = 10. Likewise, GF-discrepancies of MCS shown in Table 4.1 are the
mean values. It is seen from Table 4.1 that the COVs of errors of the mean and
standard deviation of MCS are usually as high as between 0.4 and 0.75, showing large
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variability. To be clearer, we also listed the 95 % quantile errors of MCS, which are
the mean plus 1.645 times standard deviation. It is observed clearly that, for each
case, the GF-discrepancy of RQ-SPM is considerably smaller than those of Q-SPM
and MCS, and simultaneously the RQ-SPM have considerably lower errors compared
to the Q-SPM and MCS with the same number of points. In addition, it is noticeable
from this table that the accuracy of Q-SPM is rather low although it has algebraic
accuracy of 5th degree. This make it clear that the degree of nonlinearity involved
in these stochastic response analyses is far beyond polynomials of 5th degree, which
is also why there is room of improving accuracy by rotation of Q-SPM. The above
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Fig. 4.7. The probabilistic information of the first inter-story drift.
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Fig. 4.8. The CDF and PDF of extreme values of first inter-story drift (T = 20s).

examples enhance our confidence that GF-discrepancy works well even for systems
depending on random parameters in a very complex nonlinearity.

We now come back to the initial 20-dimensional example. The instantaneous
PDFs and typical PDFs at some specified instants of time could be abtained by
PDEM (RQ-SPM) [14, 15]. The instantaneous PDFs over the interval [16.5, 17.5]s
are shown in Fig. 4.7(a). Viewing Fig. 4.7(a) together with Fig. 4.7(b), we can see
more clearly that the two peaks (two modes) of the PDF at 16.5s are merged at about
17s and then separate again from each other at 17.5s. PDFs at three typical instants
of time are shown in Fig. 4.7(c) where highly irregular distribution of PDF is found
at 7s and 11.25s. The CDFs by different point sets at these time instants are shown
in Figs. 4.7(d), (e) and (f), from which it is observed that the results obtained by
RQ-SPM and MCS are in good agreement.

The CDFs and PDFs of the extreme value of the displacement of the first floor
involves reliability information of the system and could be obtained also by PDEM
[4]. The CDFs over the time interval [0, 20]s by different methods are pictured in
Fig. 4.8(a). Here, good accordance is observed between RQ-SPM and MCS whereas
Q-SPM deviates from the other two methods again. The PDF of the maximum
displacement of the first floor is shown in Fig. 4.8(b), where the feature of the two
peaks in the EVD cannot be captured by the other regular distributions as shown in
the figure.

For the same 9-story structure involving 20 basic random variables, the GF-
discrepancy of different point sets v.s. the relative error is shown in Fig. 4.9(a). A
trend of error reduction against the reduction of GF-discrepancy is clear. However,
the relationship is not rigorously monotonic, because the error is not only related to
the GF-discrepancy, but also related to the total variation of the response surface (cf.
inequalities 2.12 and 2.29, i.e., the sensitivity in terms of the basic random variables.
But if the order of magnitude of GF-discrepancy is reduced, it is almost sure that
the order of magnitude of the errors will be reduced. The above observations could
also be verified in Fig. 4.10(b) for the 7-story structure involving 15 basic random
variables as studied in Table 4.1.

Pictured in Fig. 4.10 are all the data in Table 4.1, for the problem of different
dimensions and for different methods (MCS and RQ-SPM) where the two lines are
fitted by the method of least squares. It is seen from these two figures that the trend of
the reduction of error against the reduction of GF-discrepancy is still very clear. In a
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Fig. 4.9. The relative error v.s. GF-discrepancy.

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

Generalized F-discrepancy

E
rr

o
r 

o
f 

m
e
a
n

 

 

MCS

RQ-SPM

(a) The error of mean

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

Generalized F-discrepancy

E
rr

o
r 

o
f 

st
a
n
d
a
rd

 d
e
v
ia

ti
o
n

 

 

MCS

RQ-SPM

(b) The error of the standard deviation

Fig. 4.10. The relative error of response v.s. GF-discrepancy.

sense, this gives a strong demonstration, though not rigorous proof, of the correctness
of inequality 2.29, which does not depend on the dimension of the problem, depending
only on the GF-discrepancy and the total variation of the integrand (response) in the
sense of Hardy and Krause. The GF-discrepancy, as an important index of optimally
select representative points, is thus strongly justified.

5. Concluding remarks. Smart selection of point sets in high-dimensional cu-
bature formulae is of paramount importance and is being extensively studied. In the
present paper, the concept of extended F-discrepancy (EF-discrepancy) and gener-
alized F-discrepancy (GF-discrepancy) of a point set is introduced and justified by
the comparison with other existing discrepancies. The extensions of Koksma-Hlawka
inequality for EF-discrepancy are proved. Quantitative relationship between EF- and
GF-discrepancy is studied. As an application, the quasi-symmetric point method is
employed and the rotation transforms are performed to minimize the GF-discrepancy.
It is rigorously proved that the rotation transform will keep the degree of algebraic
accuracy. A genetic algorithm is adopted to solve the optimization problem of finding
optimal rotation angles with GF-discrepancy as the objective function. Numerical
examples are studied, demonstrating that: (1) The GF-discrepancy can be adopted
as an effective index for judging the goodness of a point set; (2) The error of both
mean and standard deviation decreases following a clear trend with the reduction
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of GF-discrepancy; and (3) The accuracy of the rotational Q-SPM is improved in
comparison to the original Q-SPM. The numerical examples also show that despite
possessing algebraic accuracy of 5th degree, Q-SPM performs poor for stochastic re-
sponse analysis of nonlinear systems but RQ-SPM with lower GF-discrepancy works
well, which indicates that GF-discrepancy could be applied to problems depending on
random parameters in a strong nonlinear way far beyond polynomials of 5th degree.

It is expected that the GF-discrepancy would also be valuable in other uncertainty
quantification applications. Problems to be further studied include:

1. Rigorous proof of the error bound by GF-discrepancy (inequality 2.29) and
the quantitative relationship between EF- and GF-discrepancy (inequality 2.35);

2. To generalize the idea of improving accuracy by reducing GF-discrepancy
to other cubature formulae. Actually, based on the elaboration in the paper, GF-
discrepancy itself is essential in measure the goodness of a point set. Thus, there is a
possibility of generating good point set independent of existing cubature formulae by
minimizing GF-discrepancy;

3. The adaptivity of RQ-SPM to non-normal random-variate spaces. In this
aspect, the proof of the extended Koksma-Hlawka inequality for general non-uniform
distribution is possible and needs to be explored. To this end, GF-discrepancy will
play an important role in point selection beyond Q-SPM for general non-uniform,
non-Gaussian distributions; and

4. The degree of nonlinearity of the problems that GF-discrepancy and cuba-
ture rules could perform well. As demonstrated by examples, GF-discrepancy works
well for the problems depending on random parameters in a nonlinear way far be-
yond polynomials of 5th degree, where Q-SPM performs poor, because what is really
important for the applicability of GF-discrepancy is related to the total variation of
the integrand. To obtain a rational criterion that could guarantee the application of
GF-discrepancy is a very important open problem.
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6. Appendix: Proof of extended Koksma-Hlawka inequality in higher
dimension (s ≥ 3). Proof of Theorem 2.2 (extended Koksma-Hlawka inequality) in
higher dimensions for s ≥ 3 is similar to the case s = 2.

Firstly, according to Theorem 5.1 in [12], any bounded function could be repre-
sented as a difference of two generalized monotonic functions. Thus, we have, analo-
gous to 2.18,

(6.1) f(x1, x2, · · · , xs) = f1(x1, x2, · · · , xs)− f2(x1, x2, · · · , xs),

where f1(x1, x2, · · · , xs), f2(x1, x2, · · · , xs) are two generalized monotonic functions.
Because f1(x1, x2, · · · , xs) is a generalized monotonic (non-decreasing) function, in

the hyper-rectangle area
∏s

j=1

(
ij−1
q ≤ xj <

ij
q

)
, f1(x1, x2, · · · , xs) is no greater than
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f1

(
i1
q ,

i2
q , · · · ,

is
q

)
. Thereby we have

S1 =

n∑
k=1

Pkf1 (x1(k), x2(k), · · · , xs(k))

≤
q∑

i1=1

· · ·
q∑

is=1

 ∑
i1−1

q ≤x1(k)<
i1
q ,··· , is−1

q ≤xs(k)<
is
q

Pk

 f1

(
i1
q ,

i2
q , · · · ,

is
q

)
,(6.2)

=
s−1∑
j=1

Rj + f1(1, 1, · · · , 1)

where R1, · · · , Rs are summations given by

R1 =
s∑

j=1

q−1∑
ij=1

 ∑
xk<(1,··· ,1, isq ,1,··· ,1)

Pk


(6.3)

×
[
f1

(
1, · · · , 1, is

q , 1, · · · , 1
)
− f1

(
1, · · · , 1, is+1

q , 1, · · · , 1
)]

,

R2 =
∑

1≤j<k≤s


q−1∑
ij=1

q−1∑
ik=1

 ∑
xk<(1,

ij
q ,1,··· ,1, ikq ,··· ,1)

Pk


(6.4)

×


f1

(
1,

ij
q , 1, · · · , 1,

ik
q , · · · , 1

)
−f1

(
1,

ij+1
q , 1, · · · , 1, ik

q , · · · , 1
)

−f1

(
1,

ij
q , 1, · · · , 1,

ik+1
q , · · · , 1

)
+f1

(
1,

ij+1
q , 1, · · · , 1, ik+1

q , · · · , 1
)




,

R3 =
∑

1≤j<k<l≤s

q−1∑
ij=1

q−1∑
ik=1

q−1∑
il=1

 ∑
xk<(1,··· ,

ij
q ,··· , ikq ,··· , ilq ,··· ,1)

Pk



×



f1

(
1, · · · , ij

q , · · · ,
ik
q , · · · ,

il
q , · · · , 1

)
−f1

(
1, · · · , ij+1

q , · · · , ik
q , · · · ,

il
q , · · · , 1

)
+f1

(
1, · · · , ij+1

q , · · · , ik+1
q , · · · , il

q , · · · , 1
)

−f1

(
1, · · · , ij

q , · · · ,
ik+1
q , · · · , il

q , · · · , 1
)

+f1

(
1, · · · , ij+1

q , · · · , ik
q , · · · ,

il+1
q , · · · , 1

)
−f1

(
1, · · · , ij

q , · · · ,
ik
q , · · · ,

il+1
q , · · · , 1

)
+f1

(
1, · · · , ij

q , · · · ,
ik+1
q , · · · , il+1

q , · · · , 1
)

−f1

(
1, · · · , ij+1

q , · · · , ik+1
q , · · · , il+1

q , · · · , 1
)



.(6.5)
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Actually, for any 1 ≤ µ ≤ s, we have

Rµ =
∑

1≤j1<j2<···<jµ≤s

q−1∑
ij1=1

q−1∑
ij2=1

· · ·
q−1∑

ijµ=1


 ∑

xk<(1,··· ,
ij1
q ,··· ,

ij2
q ,··· ,

ijµ
q ,··· ,1)

Pk


(6.6)

×
1∑

Ij1 ,Ij2 ,··· ,Ijµ=0

G(Ij1 , Ij2 , · · · , Ijµ)

 .

in which

G(Ij1 , Ij2 , · · · , Ijµ) = (−1)Ij1+Ij2+···+Ijµ

(6.7)
×f1

(
1, · · · , ij1+Ij1

q , · · · , ij2+Ij2
q , · · · , ijµ+Ijµ

q , · · · , 1
)
,

where Ijr , r = 1, 2, · · · , µ could take value only either 0 or 1. In 6.6, it is seen that in
the most inner summation symbol 2µ terms are involved, while in the most outside
summation symbol Cµ

s = s!
µ!(s−µ)! terms are involved. Clearly, 6.3-6.5 are the special

cases of 6.6 as µ=1, 2 and 3, respectively. Note that the entity in [·] in 6.4 is not a
vector but a pure quantity, so is for 6.5. To proceed, we note that the empirical CDF
Fn(x1, x2, · · · , xn), and according to the definition of EF-discrepancy in 2.5 and 2.8,
there is, analogous to 2.21,

(6.8) Fn(x1, x2, · · · , xs) =
N∑
q=1

PqI{xq ≤ x} = x1x2 · · ·xs + ϑDEF (n),

where |ϑ(x1, x2, · · · , xn)| ≤ 1. Replacing
∑

xk<(x1,x2,··· ,xs)
Pk by Fn(x1, x2, · · · , xs)

and Substituting 6.8 in 6.2 yields, analogous to 2.22,

(6.9) S1 ≤ 1

qs

q∑
i1=1

· · ·
q∑

is=1

f1

(
i1
q , · · · ,

is
q

)
+TV(f1)DEF (n),

where TV(f1) is the discretized version of the total variation in the sense of Hardy
and Krause defined in 2.3 for higher-dimension.

According to 6.9, Letting q → ∞ yields

(6.10) S1 ≤
∫ 1

0

∫ 1

0

f1(x1, x2, · · · , xs)dx1dx2 · · · dxs +DEF (n)TV(f1).

The next steps follow 2.24 through 2.28 in a trivial way and will not be repeated
here. The above derivation completes the proof of Theorem 2.2 for any dimensional
case s ≥ 1.
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